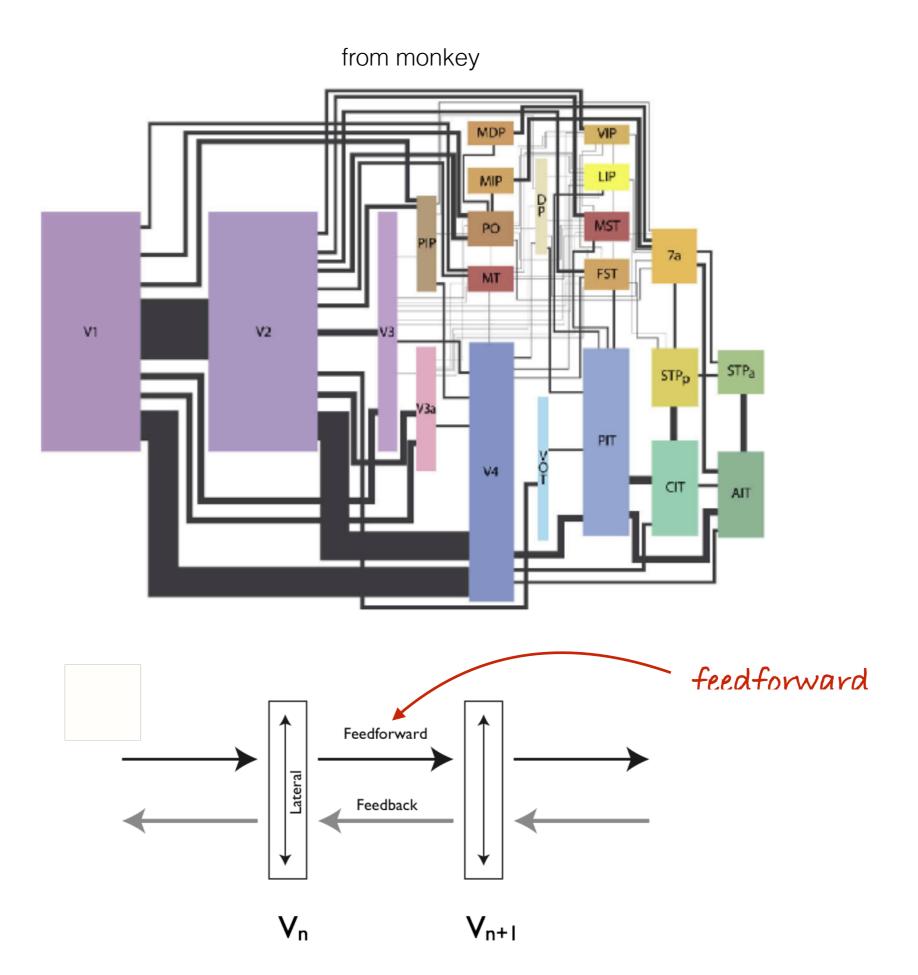
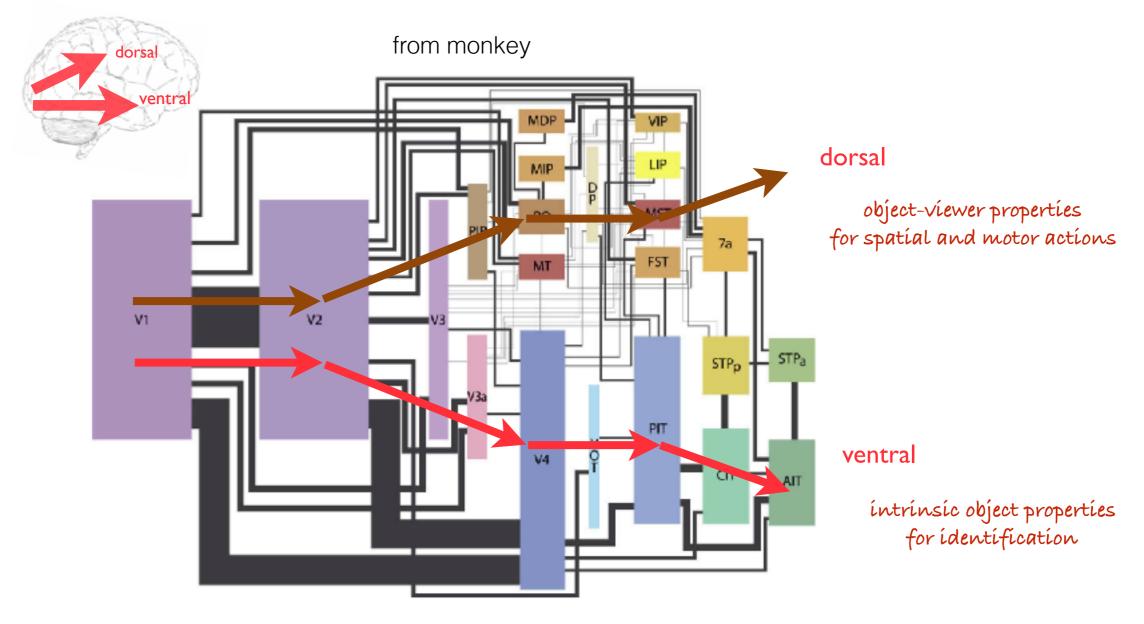
Bidirectional processing I:

feedforward & feedback networks for recognition

Focus today on feedforward architectures



Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come Unglued in the Visual Cortex. *Neuron*, 60(2), 194–197.



feedforward

What determines the different selectivities for pathways and areas?

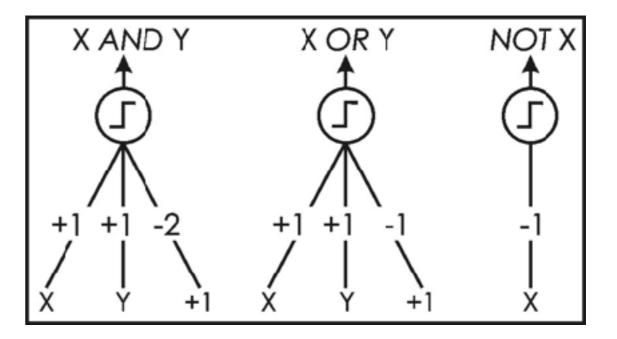
ímage information required for different basic tasks ...but lots of tasks

focus on object categorization

A brief history of computational pattern/object recognition

1940s

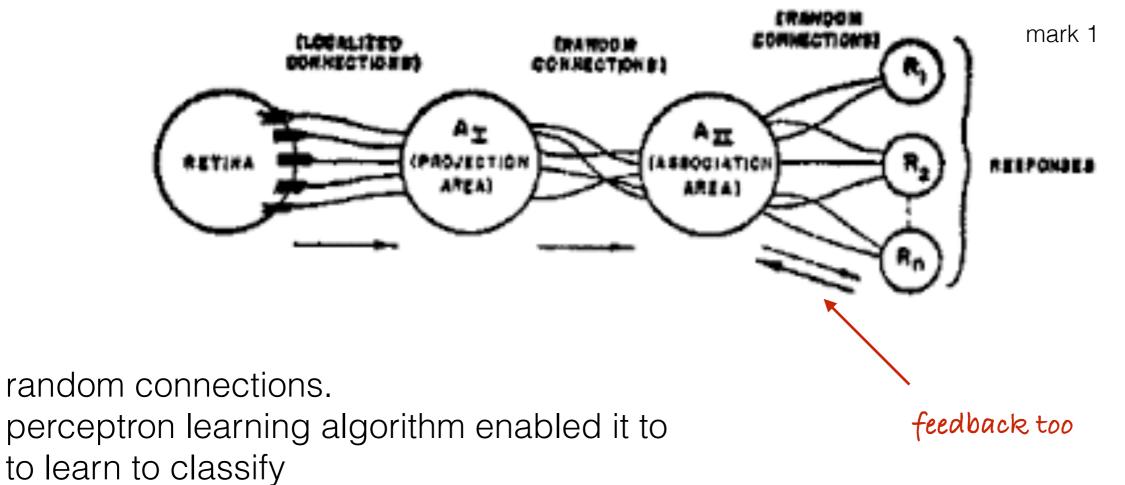
McCulloch and Pitts threshold logic units



template models, e.g. SDT

1950s

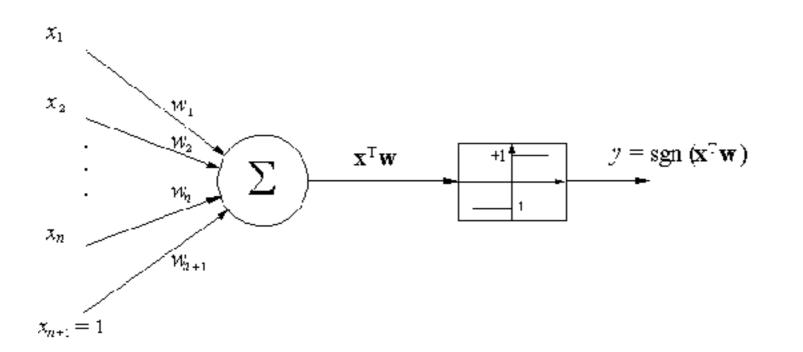
Rosenblatt's perceptron

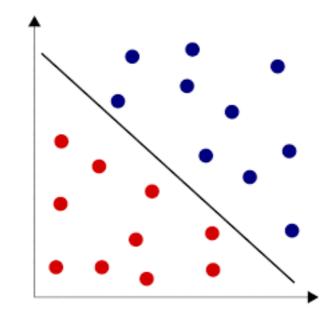


Rosenblatt, F. 'The Perceptron, a Perceiving and Recognizing Automaton', Cornell Aeronautical Laboratory Report No. 85-460-1 (1957);

Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).

Threshold-logic and the perceptron learning rule



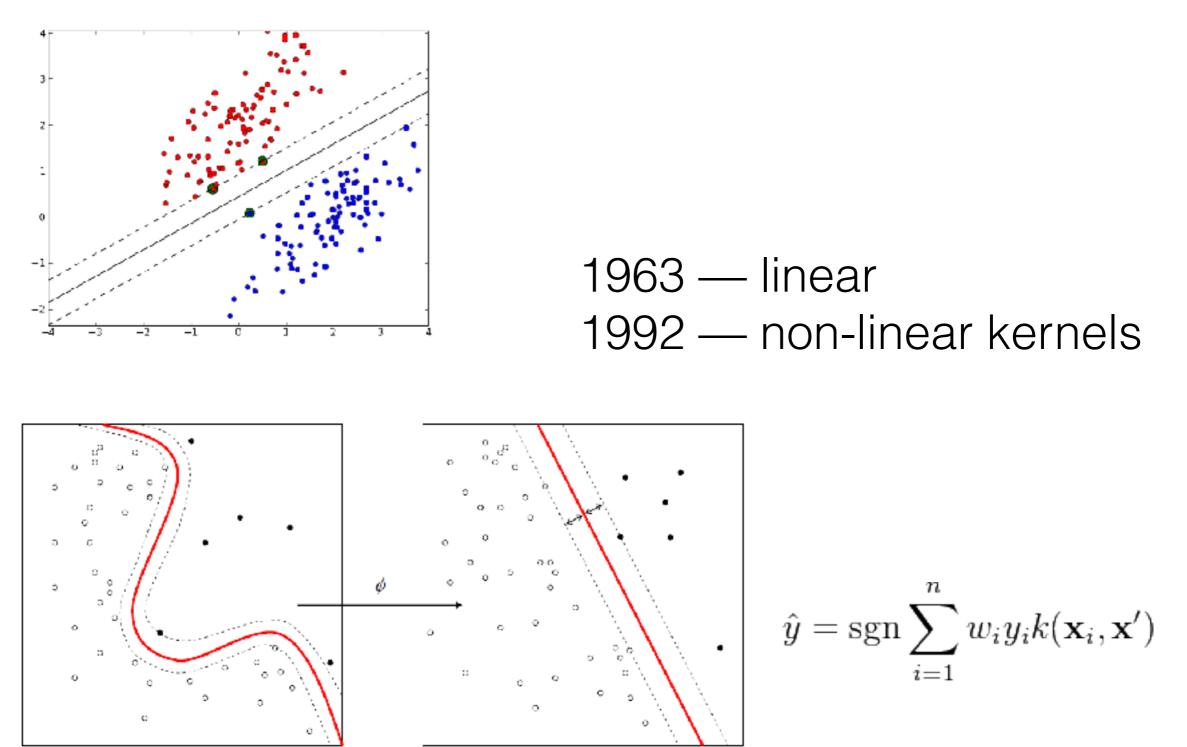


Adjust weights, w, to find separating line. Limited to linearly separable classes

Rosenblatt, F. 'The Perceptron, a Perceiving and Recognizing Automaton', Cornell Aeronautical Laboratory Report No. 85-460-1 (1957);

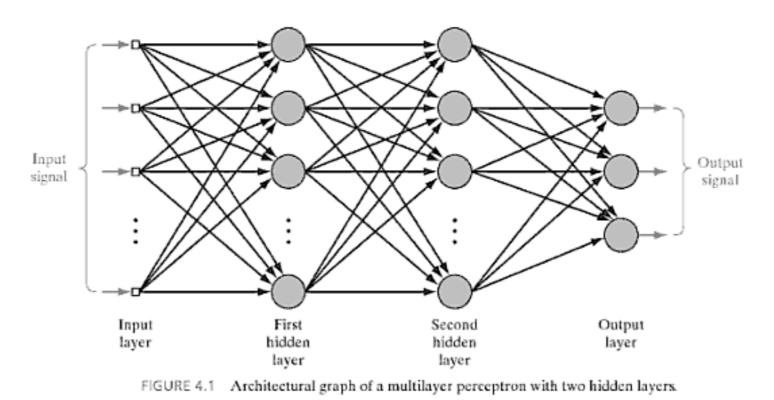
Rosenblatt, F. Principles of Neurodynamics (Washington, D.C.: Spartan, 1962).

support vector machines



https://en.wikipedia.org/wiki/Kernel_method#/media/File:Kernel_Machine.png

1980s through 1990s getting multi-layer perceptrons to work



solving the supervised learning problem:

error-back propagation for learning weights

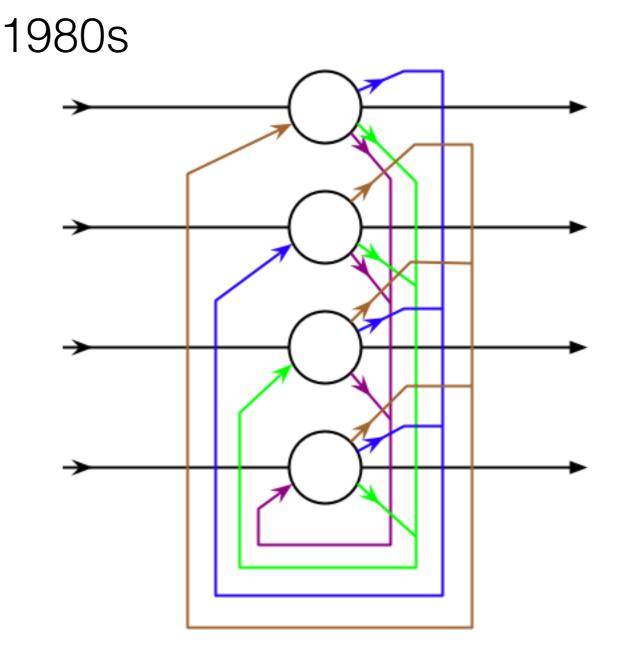
Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986). "Learning representations by back-propagating errors". Nature 323 (6088): 533–536

LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradient-basedlearning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974

Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550

recurrent networks Hopfield network Boltzmann machines



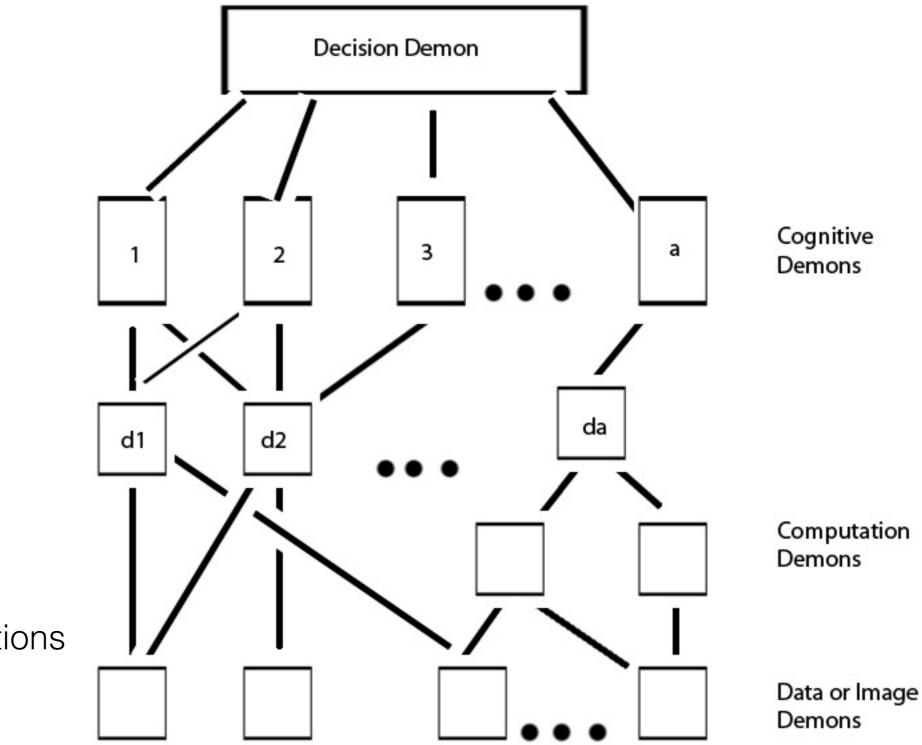
- theoretical understanding of what networks were doing
- development of cost (energy) function methods for finding solutions and learning
- very slow convergence, did not scale up
- but no architectural constraints (e.g. hierarchical)

The need for an "architecture" for vision

to manage local uncertainty

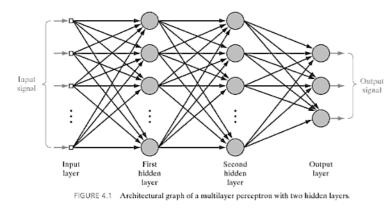
and the complexities of real-world images

Pandemonium 1959

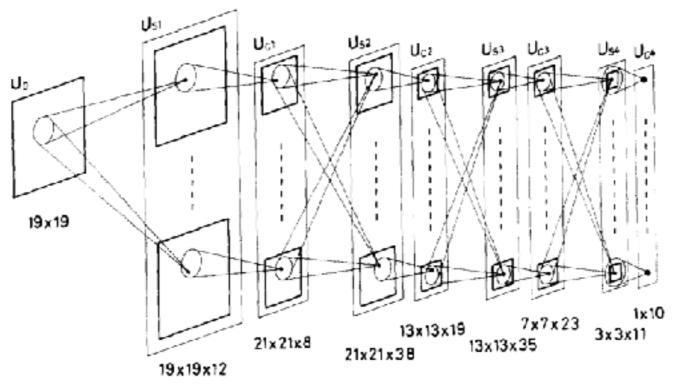


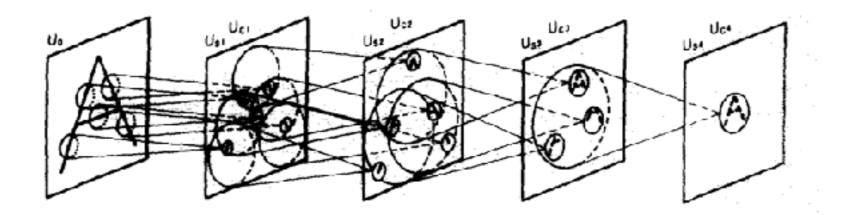
- parallel processing,
- learning
- hill-climbing cost functions

O. G. Selfridge. "Pandemonium: A paradigm for learning." In D. V. Blake and A. M. Uttley, editors, Proceedings of the Symposium on Mechanisation of Thought Processes, pages 511–529, London, 1959.



Fukushima 1988





Fukushima, K. (1988). Neocognitron - a Hierarchical Neural Network Capable of Visual-Pattern Recognition. Neural Networks, 1(2), 119–130.

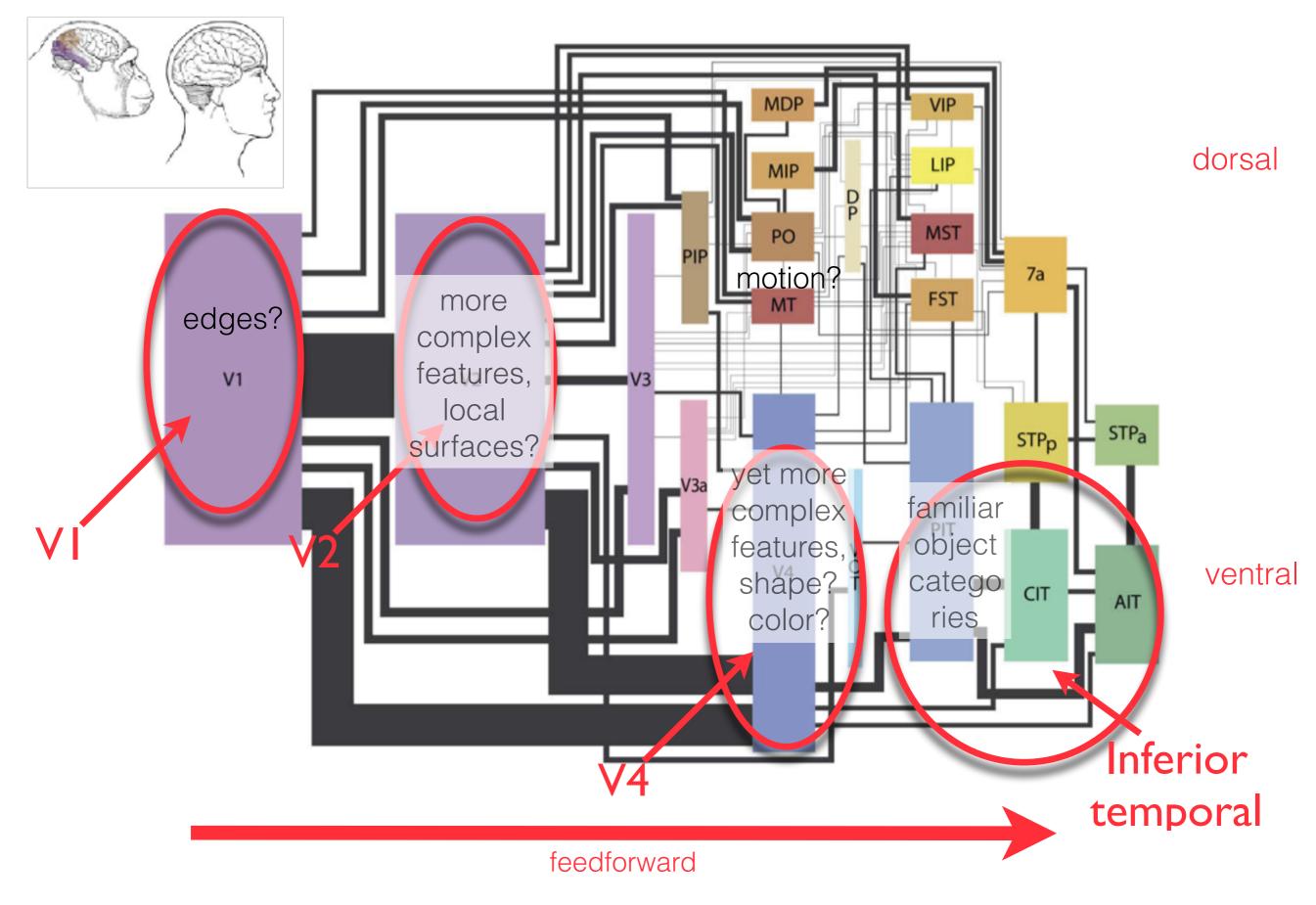
supervised and unsupervised learning

primate visual hierarchical neuroarchitecture

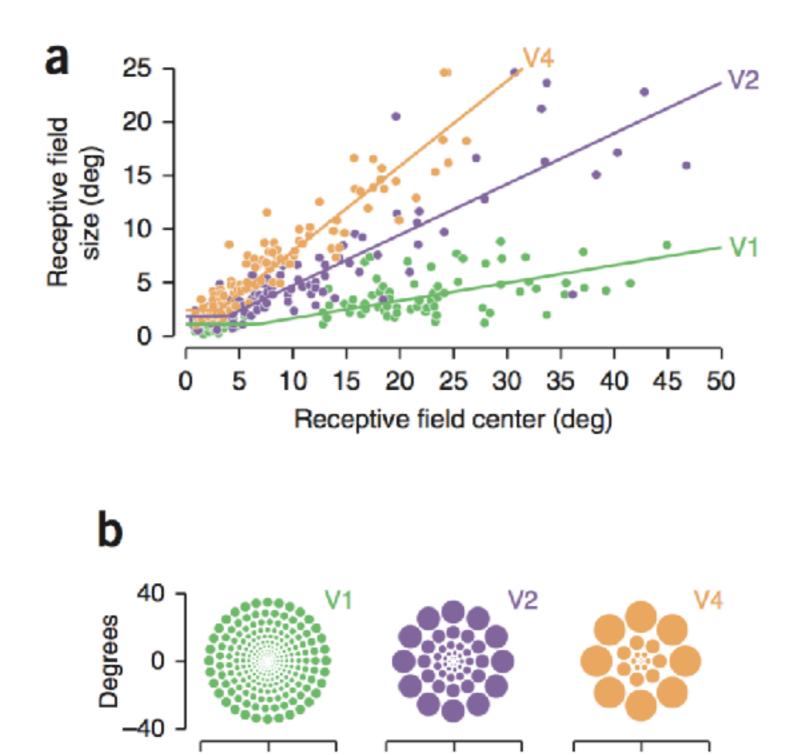
1978....1991

Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. *Nature*, *274*(5670), 423–428.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.



increasing receptive field sizes, pattern selectivity, invariance to position and scale



From Freeman & Simoncelli, 2011

0

Degrees

40

-40

0

-40

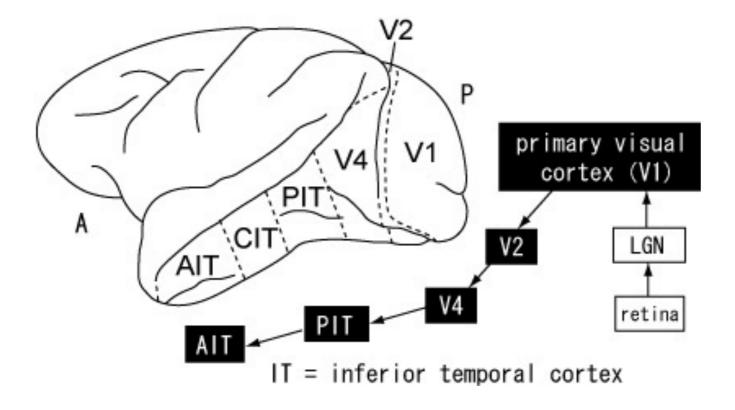
-40

40

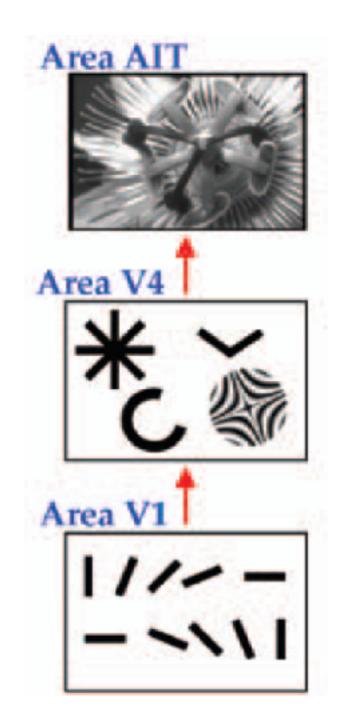
0

40

Hierarchical models of object recognition



bread and butter of ventral stream modeling



Hegde and Felleman, 2007

Hierarchical models for feature extraction for recognition

Local features progressively grouped into more structured representations

 edges => contours => fragments => parts => objects

Selectivity/invariance trade-off

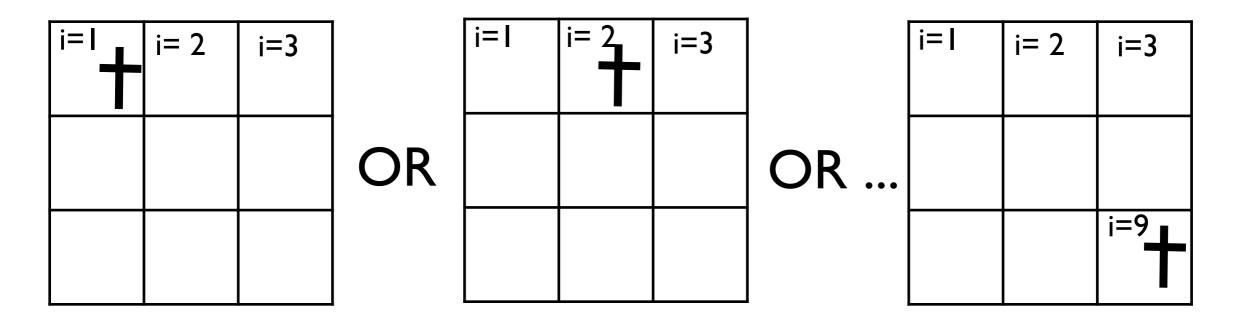
- Increased selectivity for object/pattern type
- Decreased sensitivity to view-dependent variations of translation, scale and illumination

what are the underlying computations to achieve both selectivity and invariance?

example of recognizing the letter

ANDs & ORs Recognize the letter "**†**"

"t" is represented by the conjunction of a vertical and horizontal bar:



which can occur at any one of many locations i

"†": $h_{1\&\&} v_{1} \parallel h_{2\&\&} v_{2} \parallel h_{3\&\&} v_{3...}$

simple and complex cells as AND- and ORlike operations

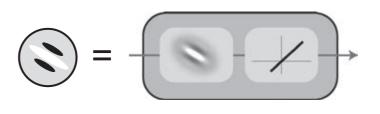
contributing towards an end-goal of invariant recognition

Riesenhuber & Poggio model

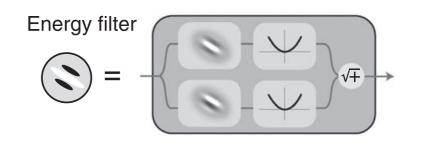
 combine the properties of simple- and complex-like cells with hierarchical organization to progressively achieve invariance

two main classes of V1 cells*

- Simple cells
 - detect conjunctions of inputs
 - similar to a logical AND



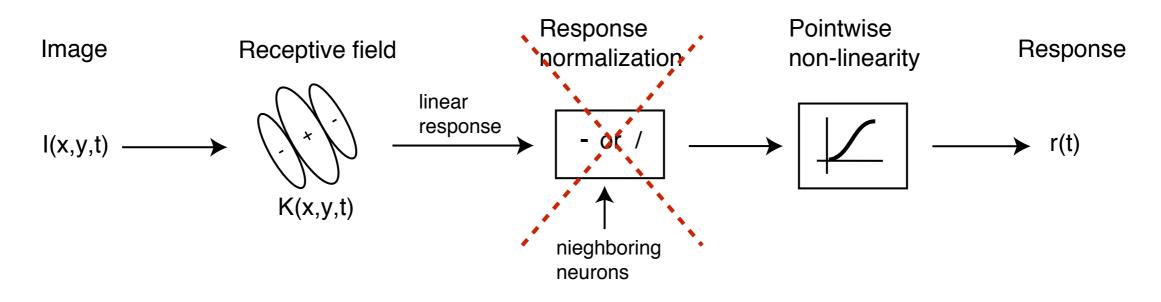
- e.g. of similar pixels to form an edge template
- "phase sensitive"
- Complex cells
 - detect disjunction
 - similar to a logical OR



- e.g. any of several similar oriented edges within a region of space will fire cell
- "phase *in*sensitive"

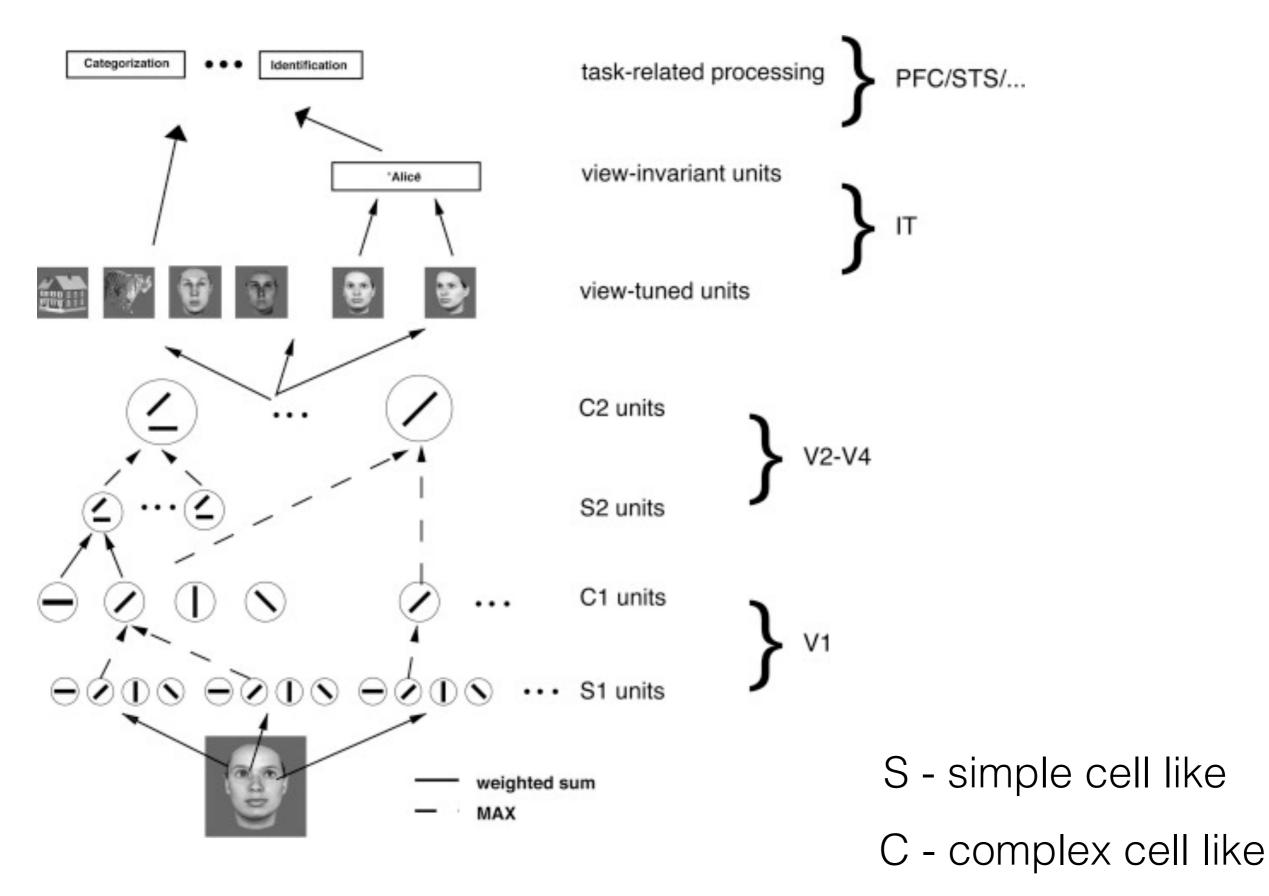
*The distinction isn't categorical--i.e. a range of phase sensitivities. And there other types of cells, e.g. end-stopped. See Mechler, F., & Ringach, D. L. (2002). On the classification of simple and complex cells. Vision Research, 42(8), 1017–1033.

simple cell feedforward model

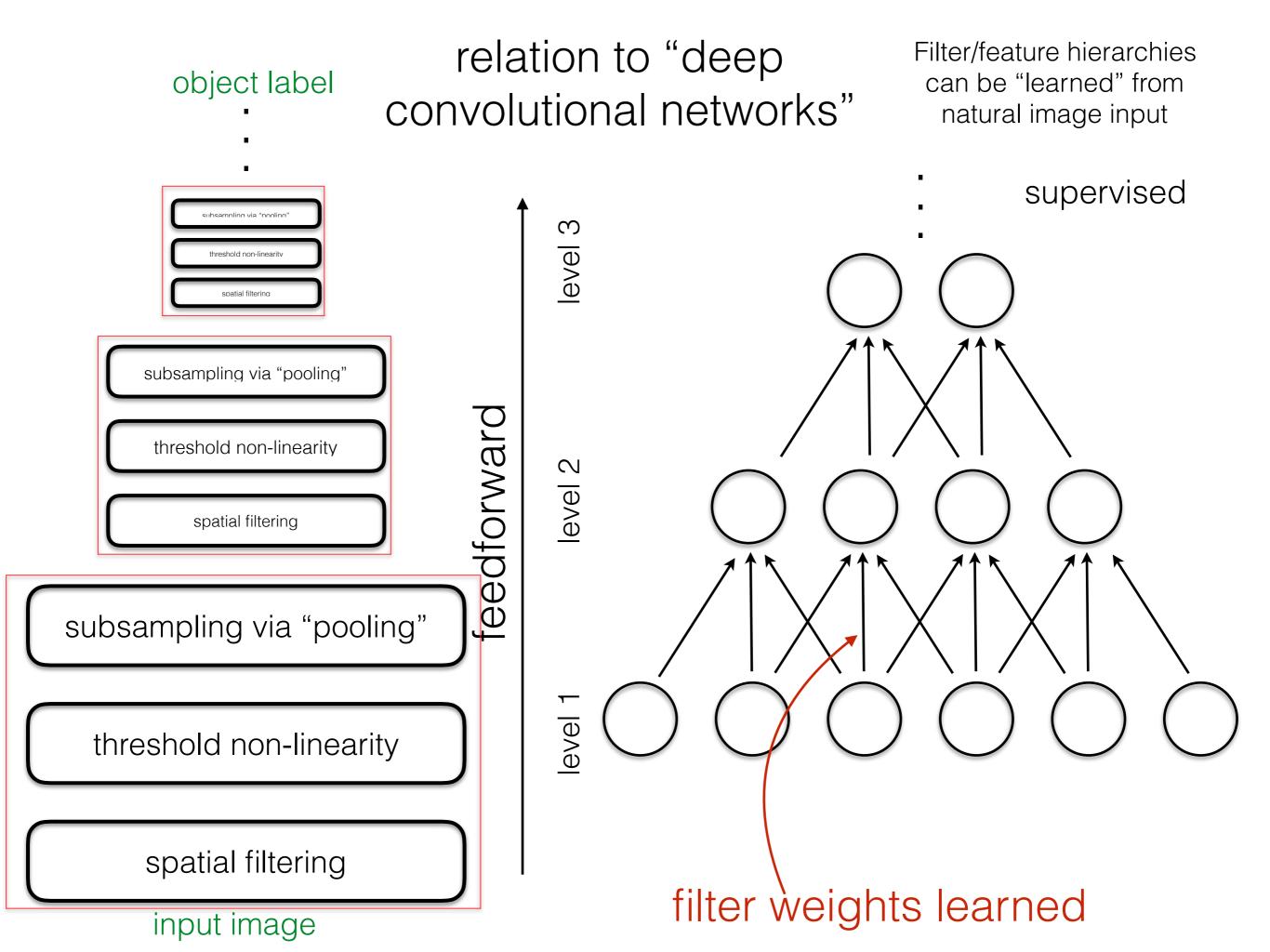


convolution — similar filtering operations repeated over space

Similar filtering operations repeated between subsequent levels $\lor_n \rightarrow \lor_{n+1}$



Riesenhuber & Poggio, 1999



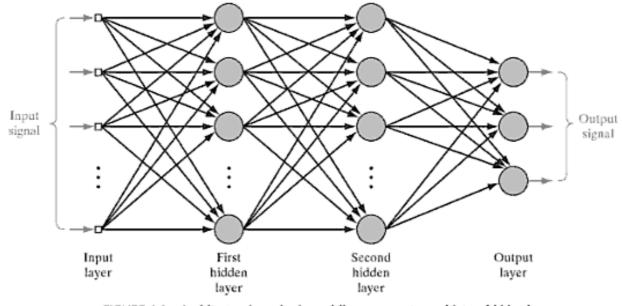


FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

Deep convolutional network learning What's new since the 1980s?

large labelled image datasets faster computations—GPUs some tricks to avoid over-fitting

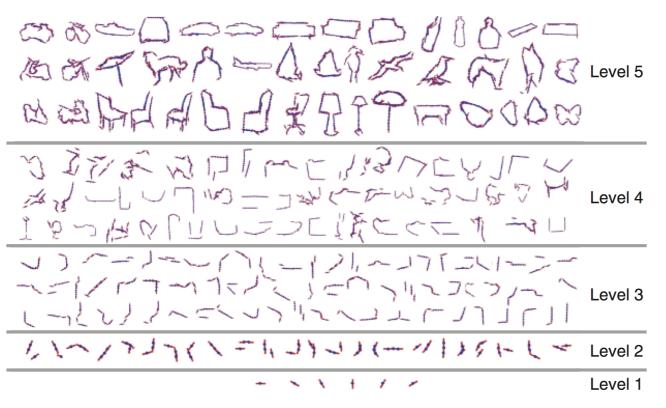
What determines feature hierarchies?

Grouping to form more abstract features, given image regularities that support tasks

- --- "hand wire" based on analysis of computation and neural models
 - e.g. Riesenhuber and Poggio, ...
- unsupervised learning based on based on successive discovery of image regularities (Barlow)
 - detecting "suspicious coincidences":
 - Is p(feature A, feature B) >> p(feature A) p(feature B)
 - if so, recode to remove dependence. E.g. contingent adaptation example
 - advantage of general features. but perhaps more useful at lower levels of the hierarchy
- supervised learning task dependent
 - — "20 questions" approach (Ephstein et al.)
 - find diagnostic features that distinguish the categories for the most important tasks to determine the top level
 - repeat at a lower level of abstract to find sub-features that distinguish the diagnostic features
 - ...and so forth
 - deep convolutional networks

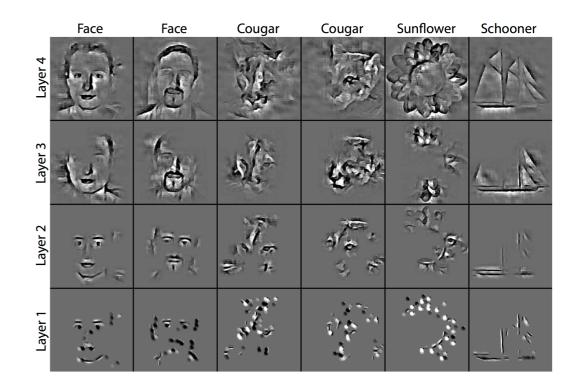
unsupervised

Filter/feature hierarchies can be "learned" from natural image input



Zhu, L., Chen, Y., Torralba, A., Freeman, W., & Yuille, A. (2011). Part and appearance sharing: Recursive compositional models for multi-view multi-object detection. *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 1919–1926.

> "Compositional" constraints: suspicious coincidences part-sharing



Zeiler, M., Taylor, G., & Fergus, R. (2011). Adaptive deconvolutional networks for mid and high level feature learning. Computer Vision (ICCV), 2011 IEEE International Conference on, 2018- 2025.

> "Deep belief" networks learning constrained by generative prediction

Explicit, "symbolic"

Implicit

What determines feature hierarchies?

Grouping to form more abstract features, given image regularities that support tasks

- --- "hand wire" based on analysis of computation and neural models
 - e.g. Riesenhuber and Poggio, ...
- unsupervised learning based on based on successive discovery of image regularities (Barlow)
 - detecting "suspicious coincidences":
 - Is p(feature A, feature B) >> p(feature A) p(feature B)
 - if so, recode to remove dependence. E.g. contingent adaptation example
 - advantage of general features. but perhaps more useful at lower levels of the hierarchy
- supervised learning task dependent
 - — "20 questions" approach (Ephstein et al.)
 - find diagnostic features that distinguish the categories for the most important tasks to determine the top level
 - repeat at a lower level of abstract to find sub-features that distinguish the diagnostic features
 - ...and so forth
 - deep convolutional networks

What determines feature hierarchies? An example based on task requirements

Need features for rapid, accurate generalization, given a visual task requirement.

Find features of "intermediate complexity", i.e. image "fragments", that are most informative for category distinctions

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience

Object recognition in the context of a task requirement

What do these scenes have in common?

"Up" curbs-- requiring a step up

Distinguish from non "up curbs"

...that do not require a step up and require different actions

Learning based on informative fragments for the task

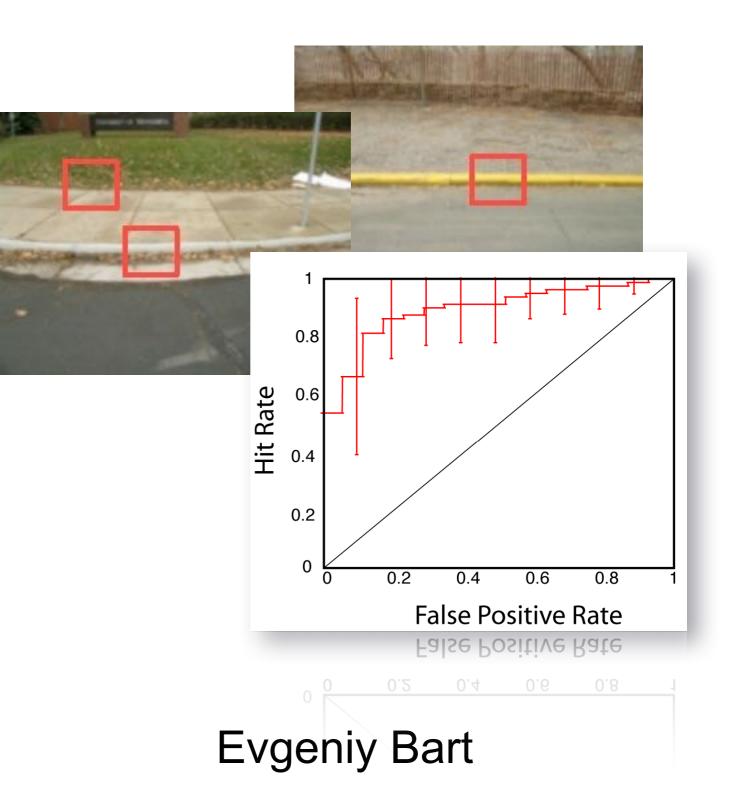
Algorithm finds fragments that maximize mutual information

Detect "up curbs" from an approach angle that requires a step.

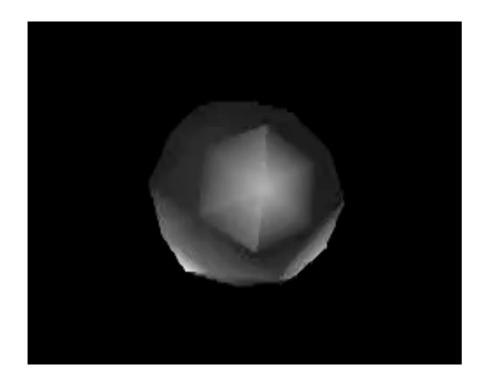
View-specific

Works well

Experimentally tractable

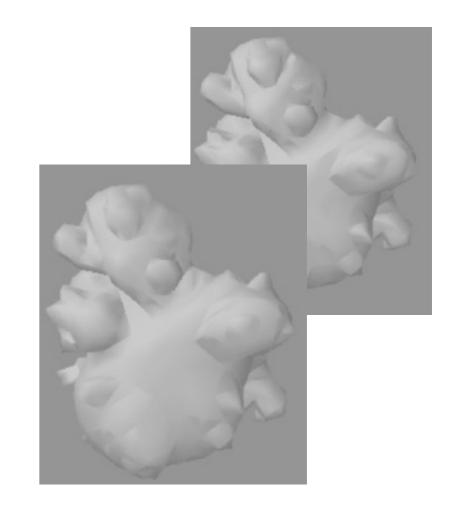


Do people learn to use fragments of predicted "intermediate complexity"

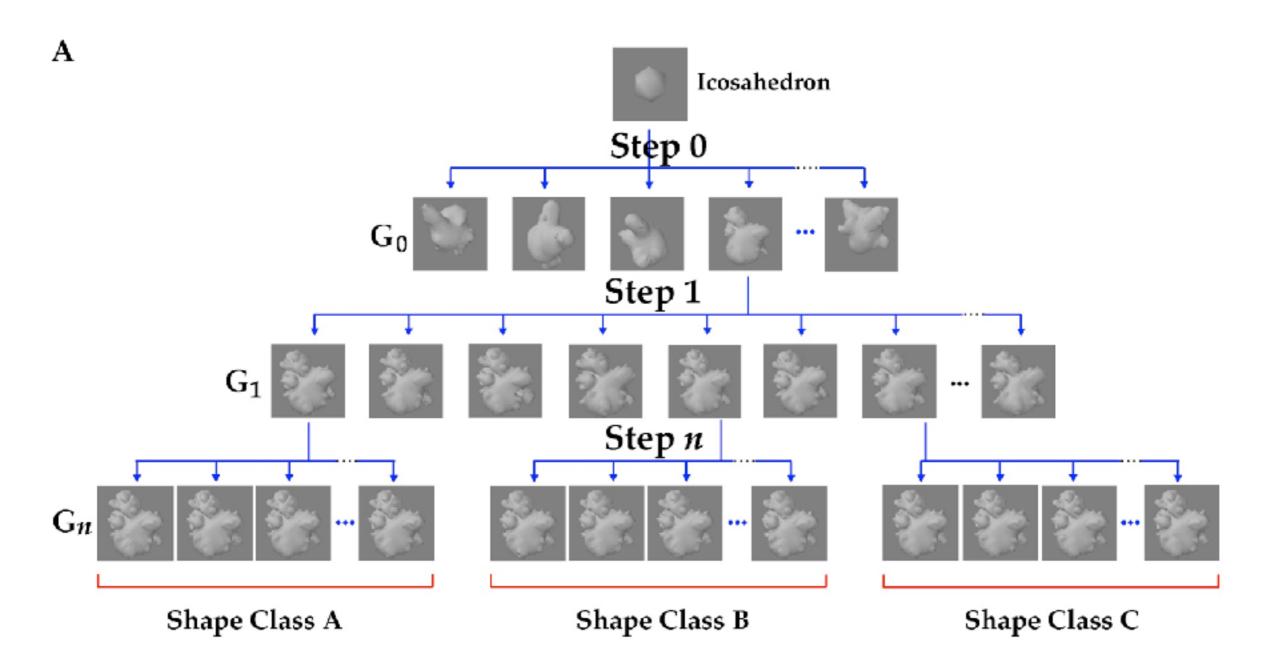


Virtual morphogenesis

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. Journal of Vision, 3(6), 413–422.



Generating naturalistic object classes Virtual Phylogenesis

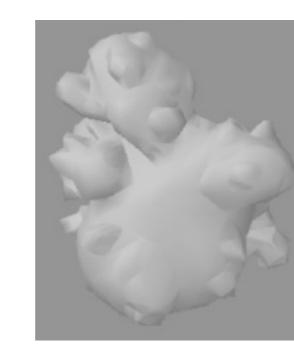


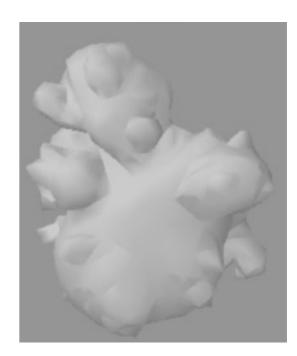
Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object Categories. Curr Biol. 18, 597-601

Training

Member of category A or B?

A

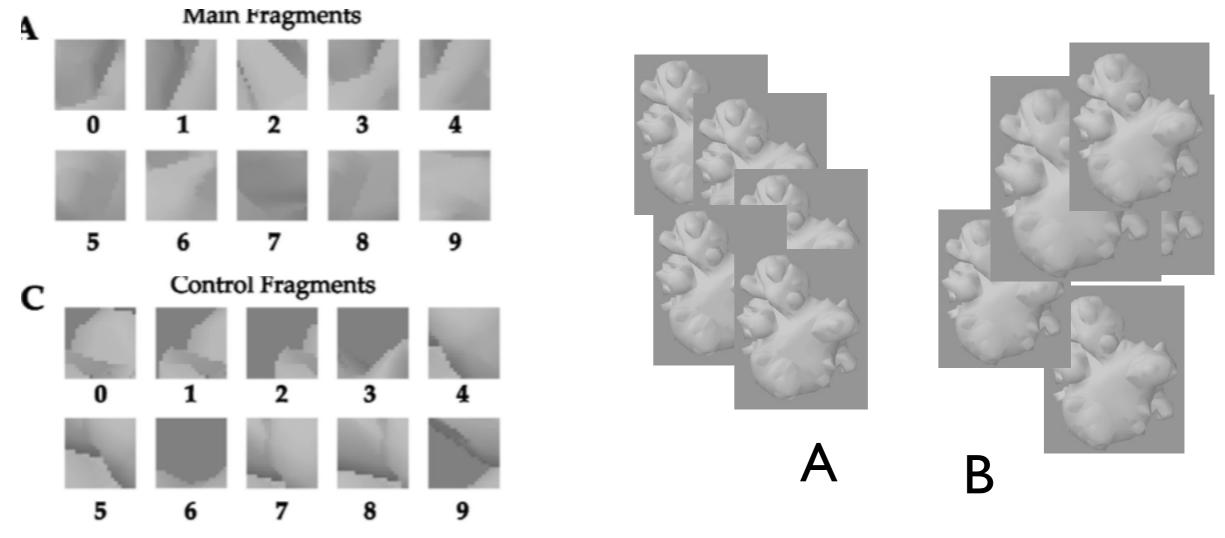




B

Results

Features of intermediate complexity (local image patches) predicted human observers ability to classify new objects from learned categories



Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object Categories. Curr Biol. 18, 597-601